Instructions

AutroFlame X98AF
IR Flame Detector
Table of Contents

DESCRIPTION ... 4
 Outputs ... 4
 LED .. 5
 Optical Integrity (oï) 5
 Communication 6
 Data Logging / Event Monitoring 6
 Integral Wiring Compartment 6

SIGNAL PROCESSING OPTIONS 6

GENERAL APPLICATION INFORMATION 7
 Response Characteristics 7
 Welding .. 7
 Artificial Lighting 7
 EMI / RFI Interference 7
 Non-Carbon Fires 7
 False Alarm Sources 7
 Factors Inhibiting Detector Response 8

IMPORTANT SAFETY NOTES 8

INSTALLATION .. 9
 Detector Positioning 9
 Detector Orientation 9
 Protection Against Moisture Damage 9
 Wiring Procedure 10
 EOL Resistors 11

STARTUP PROCEDURE 17
 Fire Alarm Test 17

TROUBLESHOOTING 17

MAINTENANCE .. 17
 Cleaning Procedure 18
 oï Plate Removal 18
 Periodic Checkout Procedure 18
 Clock Battery 18

FEATURES ... 19

SPECIFICATIONS 19

REPLACEMENT PARTS 21

DEVICE REPAIR AND RETURN 21

ORDERING INFORMATION 21
 Accessories 21

APPENDIX A – FM APPROVAL AND PERFORMANCE REPORT 23

APPENDIX B – CSA CERTIFICATION 26

APPENDIX C – ATEX APPROVAL 27

APPENDIX D – IECEx APPROVAL 29

APPENDIX E – VdS APPROVAL 30
IMPORTANT
Be sure to read and understand the entire instruction manual before installing or operating the flame detection system. Any deviation from the recommendations in this manual may impair system performance and compromise safety.

ATTENTION
The X98AF includes the Automatic Optical Integrity (Oi) feature — a calibrated performance test that is automatically performed once per minute to verify complete detector operation capabilities. No testing with an external test lamp is required.

DESCRIPTION
The evolution continues with the new X98AF IR Flame Detector. The X98AF meets the most stringent requirements worldwide with advanced detection capabilities and immunity to extraneous sources, combined with a superior mechanical design. The detector is equipped with both automatic and manual Oi test capability. The detector has Division and Zone explosion-proof ratings and is suitable for use in indoor and outdoor applications.

The standard output configuration includes fire, fault and auxiliary relays. Output options include:

- 0 to 20 mA output (in addition to the three relays)
- Pulse output for compatibility with existing controller based systems (with fire and fault relays)
- HART Communication

A tricolor LED on the detector faceplate indicates normal condition and notifies personnel of fire alarm or fault conditions.

Microprocessor controlled heated optics increase resistance to moisture and ice.

The X98AF housing is available in copper-free aluminum or stainless steel, both with NEMA 4X and IP66 rating.

OUTPUTS
Relays
The standard detector is furnished with fire, fault and auxiliary relays. All three relays are rated 5 amperes at 30 Vdc.

The Fire Alarm relay has redundant terminals and normally open / normally closed contacts, normally de-energized operation, and latching or non-latching operation.

The Fault relay has redundant terminals and normally open contacts, normally energized operation, and latching or non-latching operation.
The Auxiliary relay has normally open / normally closed contacts, and is configurable for energized or de-energized operation, and latching or non-latching operation.

0 to 20 mA Output

A 0 to 20 mA output is available as an option (in addition to the three relays). This option provides a 0 to 20 mA dc current output for transmitting detector status information to other devices. The circuit can be wired in either an isolated or non-isolated configuration and can drive a maximum loop resistance of 500 ohms from 18 to 19.9 Vdc and 600 ohms from 20 to 30 Vdc. Table 1 indicates the detector status conditions represented by the various current levels. The output is calibrated at the factory, with no need for field calibration. A model with relays and 0-20 mA with HART is also available. Refer to Addendum number 95-8637 for complete details.

NOTE

The output of the 0 to 20 mA current loop is not monitored by the fault detection circuitry of the X98AF. Therefore, an open circuit on the loop will not cause the fault relay to change state or the detector status LED to indicate a fault. The status of the LED always follows the status of the relays.

An alarm condition will normally over-ride a fault condition, unless the nature of the fault condition impairs the ability of the detector to generate or maintain an alarm output, i.e. loss of operating power.

Table 1—Detector Status Conditions Indicated by Current Level

<table>
<thead>
<tr>
<th>Current Level (±0.3 mA)</th>
<th>Detector Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mA</td>
<td>Power Fault</td>
</tr>
<tr>
<td>1 mA</td>
<td>General Fault</td>
</tr>
<tr>
<td>2 mA</td>
<td>oî Fault</td>
</tr>
<tr>
<td>4 mA</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>16 mA</td>
<td>Pre-Alarm</td>
</tr>
<tr>
<td>20 mA</td>
<td>Fire Alarm</td>
</tr>
</tbody>
</table>

Table 2—Detector Status Indicator

<table>
<thead>
<tr>
<th>Detector Status</th>
<th>LED Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power On/Normal Auto oî (no fault or fire alarm)</td>
<td>Green</td>
</tr>
<tr>
<td>Power On/Normal Man oî</td>
<td>Green, flashing on for 0.5 sec. every 5 sec.</td>
</tr>
<tr>
<td>Fault</td>
<td>Yellow</td>
</tr>
<tr>
<td>Pre-Alarm/Background IR</td>
<td>Red, flashing on for 500 ms. and off for 500 ms.</td>
</tr>
<tr>
<td>Fire (Alarm)</td>
<td>Steady Red</td>
</tr>
<tr>
<td>Low IR Sensitivity</td>
<td>One Green Flash</td>
</tr>
<tr>
<td>Medium IR Sensitivity</td>
<td>Two Green Flashes</td>
</tr>
<tr>
<td>High IR Sensitivity</td>
<td>Three Green Flashes</td>
</tr>
<tr>
<td>Very High IR Sensitivity</td>
<td>Four Green Flashes</td>
</tr>
<tr>
<td>Quick Fire/TDSA IR Signal</td>
<td>One Yellow Flash</td>
</tr>
<tr>
<td>TDSA only IR Signal</td>
<td>Two Yellow Flashes</td>
</tr>
</tbody>
</table>

LED

A tricolor LED on the detector faceplate indicates normal condition and notifies personnel of fire alarm or fault conditions. Table 2 indicates the condition of the LED for each status.

OPTICAL INTEGRITY (oî)

Automatic oî

The X98AF includes the Automatic Optical Integrity (oî) feature — a calibrated performance test that is automatically performed once per minute to verify complete detector operation capabilities. No testing with an external test lamp is required. The detector automatically performs the same test that a maintenance person with a test lamp would perform — once every minute, 60 times per hour. However, a successful automatic oî test does not produce an alarm condition.

The X98AF signals a fault condition when less than half of the detection range remains. This is indicated by the Fault relay and is evident by the yellow color of the LED on the face of the detector. See the "Troubleshooting" section for further information.

Magnetic oî / Manual oî

The detector also incorporates both magnetic oî and manual oî features that provide the same calibrated test as the automatic oî, and in addition actuates the Alarm relay to verify output operation for preventive maintenance requirements. These features can be performed at any time and eliminate the need for testing with a non-calibrated external test lamp.
CAUTION

These tests require disabling of all extinguishing devices to avoid release resulting from a successful test.

The magnetic test is performed by placing a magnet by the marked location (mag) on the outside of the detector. The manual test is accomplished by connecting the lead (terminal 22) to power supply minus via an external switch. The magnet or switch must be held in place for a minimum of 6 seconds to complete the test. Either of these test methods activates the calibrated IR emitter. If the resulting signal meets the test criteria, indicating that greater than half of the detection range remains, the Alarm relay changes state, the indicating LED changes to red, and the 0-20 mA current output goes to 20 mA. This condition remains until the magnet is removed or the switch is released, regardless of whether the relays are set for latching or non-latching operation.

If less than half of the detection range remains, no alarm is produced and a fault is generated. The fault indication can be reset by momentarily applying the magnet or manual switch.

NOTE

Refer to the Appendix A for FM verification of Det-Tronics’ Optical Integrity function.

INTEGRAL WIRING COMPARTMENT

All external wiring to the device is connected within the integral junction box. The screw terminals accept wiring from 14 to 24 AWG. The detector is furnished with four conduit entries, with either 3/4 inch NPT or 25 mm threads.

SIGNAL PROCESSING OPTIONS

The X98AF features signal processing options. These options determine the type of logic that the detector will use for processing fire signals to customize the X98AF to the application. Two signal processing options are available for the X98AF:

- TDSA enabled
- Both TDSA and Quick Fire enabled (either initiates fire alarm).

Time Domain Signal Analysis (TDSA)

The TDSA signal processing technique analyzes the input signal in real time, requiring the IR signal to flicker randomly in order to recognize it as a fire condition.

Using TDSA signal processing, the X98AF ignores regularly chopped blackbody sources (occurring in areas where moving conveyors and hot objects in proximity to one another result in a regularly chopped IR signal), because it looks for a less uniform signal. However, in the presence of a regularly chopped signal, the unit is more susceptible to false alarms due to sporadic IR that functions as a trigger when occurring in conjunction with the regularly chopped signal.

Quick Fire (High Speed)

The Quick Fire (High Speed) feature can be used in conjunction with the TDSA signal processing method. This method overrides TDSA requirements in the event of an intense signal. When Quick Fire is activated, the detector is capable of responding to an intense fire signal in less than 30 milliseconds (0.030 seconds). Using the Quick Fire feature in conjunction with TDSA signal processing allows the detector to provide a high speed response to a large, non-flickering fire (such as in high pressure gas applications) while maintaining an ability to respond to smaller fires.

DATA LOGGING / EVENT MONITORING

Data logging for event monitoring capability is also provided. The detector can log up to 1500 events (up to 1000 general and 500 alarm events). Status conditions such as normal, power down, general and faults, pre-alarm, fire alarm, time and temperature are recorded. Each event is time and date stamped, along with the temperature and input voltage. Event data is stored in non-volatile memory when the event becomes active, and again when the status changes. Data is accessible using the RS-485 port.
GENERAL APPLICATION INFORMATION

RESPONSE CHARACTERISTICS
Response is dependent on distance, type of fuel, temperature of the fuel, and time required for the fire to come to equilibrium. As with all fire tests, results must be interpreted according to an individual application.

See Appendix A for fire test results.

WELDING
It is recommended that the system be bypassed during welding operations in situations where the possibility of a false alarm cannot be tolerated. Gas welding mandates system bypass, since the gas torch is an actual fire. Arc welding rods can contain organic binder materials in the flux that burn during the welding operation and are detectable by the X98AF. Welding rods with clay binders do not burn and will not be detected by the X98AF. However, system bypass is always recommended, since the material being welded may be contaminated with organic substances (paint, oil, etc.) that will burn and possibly trigger the X98AF.

ARTIFICIAL LIGHTING
The X98AF should not be located within 3 feet of artificial lights. Excess heating of the detector could occur due to heat radiating from the lights.

EMI/RFI INTERFERENCE
The X98AF is resistant to interference by EMI and RFI, and is EMC Directive compliant and CE marked. It will not respond to a 5 watt walkie-talkie at distances greater than 1 foot.

NON-CARBON FIRES
The response of the X98AF is limited to carbonaceous fuels. It should not be used to detect fires from fuels that do not contain carbon, such as hydrogen, sulfur and burning metals.

FALSE ALARM SOURCES
The detector has been designed to ignore steady state infrared sources that do not have a flicker frequency characteristic of a fire, however, it should be noted that if these steady state infrared sources are hot enough to emit adequate amounts of infrared radiation in the response range of the IR sensor and if this radiation becomes interrupted from the view of the detector in a pattern characteristic of a flickering flame, the IR sensor can respond.

Any object having a temperature greater than 0° Kelvin (−273°C) emits infrared radiation. The hotter the object, the greater the intensity of the emitted radiation. The closer the infrared source is to the detector, the greater the potential for a false alarm. The IR sensor can respond to IR radiation sources that can meet the amplitude and flicker requirements of the detector such as vibrating hot objects.
FACTORS INHIBITING DETECTOR RESPONSE

Windows
Glass and Plexiglas windows significantly attenuate radiation and must not be located between the detector and a potential flame source. If the window cannot be eliminated or the detector location changed, contact Detector Electronics Corporation’s (Det-Tronics®) for recommendations regarding window materials that will not attenuate radiation.

Obstructions
Radiation must be able to reach the detector in order for it to respond. Care must be taken to keep physical obstructions out of the line of view of the detector.

Smoke
Smoke will absorb radiation. If accumulations of dense smoke can be expected to precede the presence of a flame, then detectors that are used in enclosed areas should be mounted on the wall approximately 3 feet (1 meter) from the ceiling where the accumulation of smoke is reduced.

Detector Viewing Windows
It is important to keep the detector viewing windows as free of contaminants as possible in order to maintain maximum sensitivity. Commonly encountered substances that can significantly attenuate IR radiation include, but are certainly not limited to, the following:

Dust and dirt buildup
Paint overspray
Water and ice.

IMPORTANT SAFETY NOTES

⚠️ WARNING
Do not open the detector assembly in a hazardous area when power is applied. The detector contains limited serviceable components and should never be opened. Doing so could disturb critical optical alignment and calibration parameters, possibly causing serious damage. This type of damage could be undetected and could result in failure to see a fire and/or false alarm.

⚠️ CAUTION
The wiring procedures in this manual are intended to ensure proper functioning of the device under normal conditions. However, because of the many variations in wiring codes and regulations, total compliance to these ordinances cannot be guaranteed. Be certain that all wiring complies with the NEC as well as all local ordinances. If in doubt, consult the authority having jurisdiction before wiring the system. Installation must be done by a properly trained person.

⚠️ CAUTION
To prevent unwanted actuation or alarm, extinguishing devices must be disabled prior to performing detection system tests or maintenance.

⚠️ CAUTION
The IR flame detectors are to be installed in places where the risk of mechanical damages is low.

⚠️ ATTENTION
Remove the protective cap from the front of the detector before activating the system.

⚠️ ATTENTION
Observe precautions for handling electrostatic sensitive devices.
INSTALLATION

NOTE
The recommended lubricant for threads and O-rings is a silicone free grease (part number 116-005003-001) available from Autronica. Under no circumstances should a lubricant containing silicone be used.

DETECTOR POSITIONING

Detectors should be positioned to provide the best unobstructed view of the area to be protected. The following factors should also be taken into consideration:

- Identify all high risk fire ignition sources.
- Be sure that enough detectors are used to adequately cover the hazardous area.
- Be sure that the unit is easily accessible for cleaning and other periodic servicing.
- Locate and position the detector so that the fire hazard(s) are within both the field of view and detection range of the device. Refer to Appendix A for specific information.
- The detector should be aimed downward at least 10 to 20 degrees to allow lens openings to drain. See Figure 1. The detector should be positioned so that its field of view does not cover areas outside the hazardous area. This will minimize the possibility of false alarms caused by activities outside the area requiring protection.
- For best performance, the detector should be mounted on a rigid surface in a low vibration area.
- Dense fog, rain as well as certain gases and vapors can absorb IR radiation and reduce the sensitivity of the detector.
- Verify that all detectors in the system are properly aimed at the area to be protected. (The Det-Tronics Q1201C Laser Aimer is recommended for this purpose.)
- If possible, fire tests should be conducted to verify correct detector positioning and coverage.
- For ATEX installations, the X98AF detector housing must be electrically connected to earth ground.

DETECTOR ORIENTATION

Refer to Figure 2 and ensure that the oj plate will be oriented as shown when the X98AF is mounted and sighted. This will ensure proper operation of the oj system and will also minimize the accumulation of moisture and contaminants between the oj plate and the viewing windows.

PROTECTION AGAINST MOISTURE DAMAGE

It is important to take proper precautions during installation to ensure that moisture will not come in contact with the electrical connections of the system. The integrity of the system regarding moisture protection must be maintained for proper operation and is the responsibility of the installer.
If conduit is used, we recommend installing drains, according to local codes, at water collection points to automatically drain accumulated moisture. It is also recommended to install at least one breather, according to local codes, at upper locations to provide ventilation and allow water vapor to escape.

Conduit raceways should be inclined so that water will flow to low points for drainage and will not collect inside enclosures or on conduit seals. If this is not possible, install conduit drains above the seals to prevent the collection of water or install a drain loop below the detector with a conduit drain at the lowest point of the loop.

Conduit seals are not required for compliance with explosion-proof installation requirements, but are highly recommended to prevent water ingress in outdoor applications. Units with M25 thread must use an IP66 washer or an O-ring sealed adapter/gland to prevent water ingress.

WIRING PROCEDURE

Wire Size and Type

The system should be wired according to local codes. The wire size selected should be based on the number of detectors connected, the supply voltage and the cable length. Typically 14 AWG (2.08 mm²) or 16 AWG (1.31 mm²) shielded cable is recommended. Wires should be stripped 3/8 inch (9 mm). A minimum input voltage of 18 Vdc must be present at the X98AF.

The use of shielded cable is required to protect against interference caused by EMI and RFI. When using cables with shields, terminate the shields as shown in Figures 7 through 12, and Figure 14. Consult the factory if not using shielded cable.

In applications where the wiring cable is installed in conduit, the conduit must not be used for wiring to other electrical equipment.

If disconnection of power is required, separate disconnect capability must be provided.

CAUTION

Installation of the detector and wiring should be performed only by qualified personnel.

Detector Mounting

Install the swivel mounting bracket assembly on the wall. The installation surface should be free of vibration and suitable to receive 1/4 inch (M6) screws with a length of at least 1 inch (25 mm), and have sufficient capacity to hold the detector and bracket weight. Refer to Figure 3 for dimensions.
Relay and 0-20 mA Output Models

Follow the instructions below to install the X98AF.

1. Make field connections following local ordinances and guidelines in this manual. Refer to Figures 4 through 12.

2. Check all field wiring to be sure that the proper connections have been made.

3. Make the final sighting adjustments and ensure that the mounting bracket hardware is tight.

IMPORTANT

Do not test any wiring connected to the detector with a meg-ohmmeter. Disconnect wiring at the detector before checking system wiring for continuity.

EOL RESISTORS

To ensure that the insulating material of the wiring terminal block will not be affected by the heat generated by EOL resistors, observe the following guidelines when installing the resistors.

1. Required EOL resistor power rating must be 5 watts minimum.

 NOTE

 EOL resistors must be ceramic, wirewound type, rated 5 watts minimum, with actual power dissipation not to exceed 2.5 watts. *This applies to ATEX/IEC installations only.*

2. Resistor leads should be cut to a length of approximately 1 1/2 inches (40 mm).

3. Bend the leads and install the EOL resistor as shown in Figure 6.

4. Maintain a 3/8 inch (10 mm) minimum gap between the resistor body and the terminal block or any other neighboring parts.

 NOTE

 The EOL resistor can only be used within the flameproof terminal compartment. Unused apertures shall be closed with suitable blanking elements.
WIRING NOTES:

1. In normal operation with no faults occurring, the fault relay coil is energized and the normally open (N.O.) and common (COM) contacts are closed.
2. Alarm relay is normally de-energized with no alarm condition present.
3. Individual manual test switches can be installed remotely or a detector selector and activation switch can be installed at the fire panel. Test switches are not supplied.
4. Refer to specifications section for EOL resistor values. Refer to EOL resistors section for installation details.

Figure 7—Ex d Wiring Option

WIRING NOTES:

1. In normal operation with no faults occurring, the fault relay coil is energized and the normally open (N.O.) and common (COM) contacts are closed.
2. Alarm relay is normally de-energized with no alarm condition present.
3. Individual manual test switches can be installed remotely or a detector selector and activation switch can be installed at the fire panel. Test switches are not supplied.
4. EOL resistor supplied by panel.

Figure 8—Ex e Wiring Option
NOTES: 1. INDIVIDUAL MANUAL oI TEST SWITCHES CAN BE INSTALLED REMOTELY OR A DETECTOR SELECTOR AND ACTIVATION SWITCH CAN BE INSTALLED AT THE FIRE PANEL. TEST SWITCHES ARE NOT SUPPLIED.
NOTES: 1. INDIVIDUAL MANUAL OI TEST SWITCHES CAN BE INSTALLED REMOTELY OR A DETECTOR SELECTOR AND ACTIVATION SWITCH CAN BE INSTALLED AT THE FIRE PANEL. TEST SWITCHES ARE NOT SUPPLIED.
WIRING NOTES:

1. IN NORMAL OPERATION WITH NO FAULTS OCCURRING, THE FAULT RELAY COIL IS ENERGIZED AND THE NORMALLY OPEN (N.O.) AND COMMON (COM) CONTACTS ARE CLOSED.

2. ALARM RELAY IS NORMALLY DE-ENERGIZED WITH NO ALARM CONDITION PRESENT.

3. INDIVIDUAL MANUAL 4-20 mA TEST SWITCHES CAN BE INSTALLED REMOTELY OR A DETECTOR SELECTOR AND ACTIVATION SWITCH CAN BE INSTALLED AT THE FIRE PANEL. TEST SWITCHES ARE NOT SUPPLIED.

Figure 13 – EEx d wiring option, AutroSafe

WIRING NOTES:

1. IN ORDER TO ACHIEVE AN EEx E INSTALLATION, THE EOL RESISTOR MUST BE MOUNTED IN THE SAFE AREA.

2. TERMINALS FOR CONNECTION OF THE EOL RESISTOR ARE NOT SUPPLIED AS STANDARD WITH BN-320.

3. IN NORMAL OPERATION WITH NO FAULTS OCCURRING, THE FAULT RELAY COIL IS ENERGIZED AND THE NORMALLY OPEN (N.O.) AND COMMON (COM) CONTACTS ARE CLOSED.

4. ALARM RELAY IS NORMALLY DE-ENERGIZED WITH NO ALARM CONDITION PRESENT.

5. INDIVIDUAL MANUAL 4-20 mA TEST SWITCHES CAN BE INSTALLED REMOTELY OR A DETECTOR SELECTOR AND ACTIVATION SWITCH CAN BE INSTALLED AT THE FIRE PANEL. TEST SWITCHES ARE NOT SUPPLIED.

Figure 14 – EEx e wiring option, AutroSafe

Instructions, AutroFlame X98AF 116-P-X98AF/IGB, Rev. D, 2012-02-02, Autronica Fire and Security AS
95-8683, Rev: 8/11
WIRING NOTES:

1. In normal operation with no faults occurring, the fault relay coil is energized and the normally open (N.O.) and common (COM) contacts are closed.

2. Alarm relay is normally de-energized with no alarm condition present.

3. Individual manual or test switches can be installed remotely or a detector selector and activation switch can be installed at the fire panel. Test switches are not supplied.

Figure 15 EEx d wiring option, AutroSafe, non-latching detector

Figure 16 EEx e wiring option, AutroSafe, non-latching detector

Figure 16—Address Switches for X98AF
STARTUP PROCEDURE

When installation of the equipment is complete, perform the “Fire Alarm Test” below.

FIRE ALARM TEST
1. Disable any extinguishing equipment that is connected to the system.
2. Apply input power to the system.
3. Initiate an oi test. (See “Magnetic oi / Manual oi” under Optical Integrity in the Description section of this manual.
4. Repeat this test for all detectors in the system. If a unit fails the test, refer to the “Troubleshooting” section.
5. Verify that all detectors in the system are properly aimed at the area to be protected. (The Autronica Q1201C Laser Aimer is recommended for this purpose.)
6. Enable extinguishing equipment when the test is complete.

TROUBLESHOOTING

WARNING
The sensor module (“front” half of the detector) contains no user serviceable components and should never be opened. The terminal compartment is the only part of the enclosure that should be opened by the user in the field.

1. Disable any extinguishing equipment that is connected to the unit.
2. Inspect the viewing windows for contamination and clean as necessary. (Refer to the “Maintenance” section for complete information regarding cleaning of the detector viewing windows.)
3. Check input power to the unit.
4. If the fire system has a logging function, check the fire panel log for output status information. See Table 3 for information regarding 0 to 20 mA output.

5. Turn off the input power to the detector and check all wiring for continuity. Important: Disconnect wiring at the detector before checking system wiring for continuity.
6. If all wiring checks out and cleaning of the oi plate/window did not correct the fault condition, check for high levels of background IR radiation by covering the detector with the factory supplied cover or aluminum foil. If the fault condition clears, extreme background IR radiation is present. Re-adjust the view of the detector away from the IR source or relocate the detector.

If none of these actions corrects the problem, return the detector to the factory for repair.

NOTE
It is highly recommended that a complete spare be kept on hand for field replacement to ensure continuous protection.

MAINTENANCE

IMPORTANT
Periodic flamepath inspections are not recommended, since the product is not intended to be serviced and provides proper ingress protection to eliminate potential deterioration of the flamepaths.

WARNING
The sensor module (“front” half of the detector) contains no user serviceable components and should never be opened. The terminal compartment is the only part of the enclosure that should be opened by the user in the field.

<table>
<thead>
<tr>
<th>Current Level (±0.3 mA)</th>
<th>Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mA</td>
<td>Power Fault</td>
<td>Check system wiring.</td>
</tr>
<tr>
<td>1 mA</td>
<td>General Fault</td>
<td>Cycle power.1</td>
</tr>
<tr>
<td>2 mA</td>
<td>oi Fault</td>
<td>Clean windows.2</td>
</tr>
<tr>
<td>4 mA</td>
<td>Normal Operation</td>
<td></td>
</tr>
<tr>
<td>16 mA</td>
<td>Hi Background IR</td>
<td>Remove IR source or aim detector away from IR source.</td>
</tr>
<tr>
<td>20 mA</td>
<td>Fire Alarm</td>
<td></td>
</tr>
</tbody>
</table>

1If fault continues, return device to factory for repair.
2See “Maintenance” section for cleaning procedure.
NOTE
Refer to the X98AF Safety Manual 116-P-AFLAMESAFETY/IGB for specific requirements and recommendations applicable to the proper installation, operation, and maintenance of all SIL-Certified X98AF flame detectors.

To maintain maximum sensitivity and false alarm resistance, the viewing windows of the X98AF must be kept relatively clean. Refer to the following procedure for cleaning instructions.

CLEANING PROCEDURE

CAUTION
Disable any extinguishing equipment that is connected to the unit to prevent unwanted actuation.

To clean the windows and \textit{oi} plate, use Autonicas window cleaner (part number 116-001680-001) and a soft cloth, cotton swab or tissue and refer to the following procedure:

1. Disable any extinguishing equipment that is connected to the unit.

 NOTE
 Remove input power when cleaning the detector windows. The rubbing motion on the surface of the windows during cleaning can create static electricity that could result in unwanted output activation.

2. Clean the viewing window and reflective surfaces of the \textit{oi} plate using a clean cloth, cotton swab or tissue, and Autonicas window cleaning solution. Use Isopropyl alcohol for contaminations that the Autonicas window cleaning solution can not remove. If a fault condition is still indicated after cleaning, remove and clean the \textit{oi} plate using the \textit{oi} Plate Removal and Replacement procedure.

 IMPORTANT
 When used in extreme environments, the reflective surface of the detector \textit{oi} plate may eventually deteriorate, resulting in reoccurring \textit{oi} faults and the need for \textit{oi} plate replacement.

\textbf{Oi Plate Removal and Replacement}

1. Disable any extinguishing equipment that is connected to the unit.

2. Loosen the two captive screws, then grasp the \textit{oi} plate by the visor and remove it from the detector. See Figure 17.

3. Install the new (or cleaned) \textit{oi} plate.

4. Re-calibrate the detector’s \textit{oi} system.

 CAUTION
 Do not replace the \textit{oi} reflector plate without also recalibrating the \textit{oi} system.

Recalibration of the \textit{oi} system requires the use of the Inspector Connector Cable and Inspector Monitor Software. These two items are included in the \textit{oi} replacement kit, or they can be purchased separately. See Ordering Information for details.

Refer to the Inspector Monitor manual, 95-8581, for instructions regarding \textit{oi} plate replacement and \textit{oi} system recalibration.

PERIODIC CHECKOUT PROCEDURE

A checkout of the system using the manual or magnetic \textit{oi} feature should be performed on a regularly scheduled basis to ensure that the system is operating properly. To test the system, perform the “Fire Alarm Test” as described in the “Startup Procedure” section of this manual.

CLOCK BATTERY

The real time clock has a backup battery that will operate the clock with no external power for nominally 10 years. It is recommended that the battery be replaced every 7 years. Return the device to the factory for battery replacement.

 NOTE
 If the backup battery is depleted, there is no effect on the operation of the flame detector, but the time stamping of the data log may be affected.
FEATURES

- Responds to a fire in the presence of modulated blackbody radiation (i.e. heaters, ovens, turbines) without false alarm.
- High speed capability — 30 milliseconds.
- Built-in data logging / event monitoring, up to 1500 events (up to 1000 general, 500 alarms).
- Microprocessor controlled heated optics for increased resistance to moisture and ice.
- Automatic, manual or magnetic optical integrity (O) testing.
- Easily replaceable (O) plate.
- Fire, fault and auxiliary relays standard.
- 0 to 20 mA isolated output (optional).
- A tricolor LED on the detector faceplate indicates normal condition and notifies personnel of fire alarm or fault conditions.
- Operates under adverse weather conditions.
- Mounting swivel allows easy sighting.
- Integral wiring compartment for ease of installation.
- Explosion-proof/flame-proof detector housing. Meets FM, CSA, ATEX and CE certification requirements.
- Class A wiring per NFPA-72.
- Meets NFPA-33 response requirement for under 0.5 second (available when model selected).
- 3 year warranty.
- Advanced signal processing (TDSA).
- RFI and EMC Directive compliant.

ASSOCIATED MANUALS

List of X98AF related manuals:

<table>
<thead>
<tr>
<th>TITLE</th>
<th>FORM NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL 2 (Safety)</td>
<td>116-P-AFLAMESAFETY/IGB</td>
</tr>
<tr>
<td>HART Addendum</td>
<td>95-8637</td>
</tr>
</tbody>
</table>

SPECIFICATIONS

OPERATING VOLTAGE—
24 Vdc nominal (18 Vdc minimum, 30 Vdc maximum). Maximum ripple is 2 volts peak-to-peak.

POWER CONSUMPTION—
Without heater: 2.1 watts at 24 Vdc nominal;
3.5 watts at 24 Vdc in alarm.
2.2 watts at 30 Vdc nominal;
4.0 watts at 30 Vdc in alarm.

Heater only: 8 watts maximum.
Total power: 16.5 watts at 30 Vdc with EOL resistor installed and heater on maximum.
EOL resistor must be ceramic, wirewound type, rated 5 watts minimum, with actual power dissipation not to exceed 2.5 watts.

For HART model, refer to Addendum number 95-8637.

POWER UP TIME—
Fault indication clears after 0.5 second; device is ready to indicate an alarm condition after 30 seconds.

OUTPUT RELAYS—

Fire Alarm relay. Form C, 5 amperes at 30 Vdc:
The Fire Alarm relay has redundant terminals and normally open / normally closed contacts, normally de-energized operation, and latching or non-latching operation.

Fault relay. Form A, 5 amperes at 30 Vdc:
The Fault relay has redundant terminals and normally open contacts, normally energized operation, and latching or non-latching operation.

Auxiliary relay. Form C, 5 amperes at 30 Vdc:
The auxiliary relay has normally open / normally closed contacts, normally energized or de-energized operation, and latching or non-latching operation.

CURRENT OUTPUT (Optional)—
0 to 20 milliampere (±0.3 mA) dc current, with a maximum loop resistance of 500 ohms from 18 to 19.9 Vdc and 600 ohms from 20 to 30 Vdc.

LON OUTPUT—
Digital communication, transformer isolated (78.5 kbps).

TEMPERATURE RANGE—
Operating: –40°F to +167°F (–40°C to +75°C).
Storage: –67°F to +185°F (–55°C to +85°C).
Hazardous location ratings from –55°C to +75°C available on flameproof model.

HUMIDITY RANGE—
0 to 95% relative humidity, can withstand 100% condensing humidity for short periods of time.
CONES OF VISION—
The detector has a 90° cone of vision (horizontal) with the highest sensitivity lying along the central axis. See Figure 18.

RESPONSE TIME—
32 inch methane plume: < 10 seconds.
1 foot x 1 foot n-Heptane: < 15 seconds.
(See Appendix A for details.)

ENCLOSURE MATERIAL—
Copper-free aluminum (painted) or 316 stainless steel.

VIBRATION—

DIMENSIONS—
See Figure 19.

WIRING—
Field wiring screw terminals are UL/CSA rated for up to 14 AWG wire, and are DIN/VDE rated for 2.5 mm² wire. Screw terminal required torque range is 3.5–4.4 in.-lbs. (0.4–0.5 N·m).

Important: 18 Vdc minimum must be available at the detector. For ambient temperatures below –10°C and above +60°C use field wiring suitable for both minimum and maximum ambient temperature.

THREAD SIZE—
Conduit connection: Four entries, 3/4 inch NPT or M25. Conduit seal not required.

SHIPPING WEIGHT (Approximate)—
Aluminum: 6 pounds (2.75 kilograms).
Stainless Steel: 10 pounds (4.5 kilograms).
Swivel Mount (AL): 6 pounds (2.75 kilograms).
Swivel Mount (SS): 14 pounds (6.4 kilograms).

WARRANTY PERIOD—
3 years.

CERTIFICATION—

For complete approval details, refer to the appropriate Appendix:

Appendix A - FM
Appendix B - CSA
Appendix C - ATEX/CE
Appendix D - IECEx
Appendix E - VdS.
REPLACEMENT PARTS

The detector is not designed to be repaired in the field. If a problem should develop, refer to the Troubleshooting section. If it is determined that the problem is caused by an electronic defect, the device must be returned to the factory for repair.

DEVICE REPAIR AND RETURN

Prior to returning devices, contact the nearest local Detector Electronics office so that a Return Material Identification (RMI) number can be assigned. A written statement describing the malfunction must accompany the returned device or component to assist and expedite finding the root cause of the failure.

Pack the unit properly. Always use sufficient packing material. Where applicable, use an antistatic bag as protection from electrostatic discharge.

NOTE
Det-Tronics reserves the right to apply a service charge for repairing returned product damaged as a result of improper packaging.

Return all equipment transportation prepaid to the factory in Minneapolis.

NOTE
It is highly recommended that a complete spare be kept on hand for field replacement to ensure continuous protection.

ORDERING INFORMATION

When ordering, please specify:

X98AF IR Flame Detector
Refer to the X98AF Model Matrix below for details

Q9033 mount is required:

Q9033A for aluminum detectors only.
Q9033B for aluminum and stainless steel detectors.

X-SERIES FLAME DETECTOR ACCESSORIES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>116-005511-002</td>
<td>Converter RS485 to RS232</td>
</tr>
<tr>
<td>116-00719-001</td>
<td>WE300B1002 Serial Inspector Connector</td>
</tr>
<tr>
<td>116-00719-002</td>
<td>WE300B1003 USB Inspector Connector</td>
</tr>
<tr>
<td>116-009207-001</td>
<td>Flame Inspector Monitor CD</td>
</tr>
<tr>
<td>116-10925-002</td>
<td>Model 475 HART Communicator</td>
</tr>
<tr>
<td>116-00739-001</td>
<td>Magnet and Extension Pole</td>
</tr>
<tr>
<td>116-009208-001</td>
<td>Replacement kit for X3301 (5 Black reflector plates) with Inspector Connector and Monitor</td>
</tr>
<tr>
<td>116-010601-002</td>
<td>Replacement kit for X3301 (5 Stainless Steel reflector plates) with Inspector Connector and Monitor</td>
</tr>
<tr>
<td>116-009208-003</td>
<td>Replacement kit for X3302 (5 Black reflector plates) with Inspector Connector and Monitor</td>
</tr>
<tr>
<td>116-010601-006</td>
<td>Replacement kit for X3302 (5 Stainless Steel reflector plates) with Inspector Connector and Monitor</td>
</tr>
<tr>
<td>116-009208-002</td>
<td>Replacement kit for X52/X22/X98 (5 Black reflector plates) with Inspector Connector and Monitor</td>
</tr>
<tr>
<td>116-007360-003</td>
<td>Replacement kit for X3301 with Black plate (requires inspector connector to calibrate)</td>
</tr>
<tr>
<td>116-010603-001</td>
<td>Replacement kit for X3301 with Stainless Steel plate (requires inspector connector to calibrate)</td>
</tr>
<tr>
<td>116-007307-002</td>
<td>Replacement kit for X3301 with Stainless Steel plate (requires inspector connector to calibrate)</td>
</tr>
<tr>
<td>116-007307-003</td>
<td>Replacement kit for X3302 with Stainless Steel plate (requires inspector connector to calibrate)</td>
</tr>
<tr>
<td>116-007240-001</td>
<td>Q1116A1001, Air Shield (AL)</td>
</tr>
<tr>
<td>116-00818-001</td>
<td>Q1118A1001 Aluminum Air Shield/Flange Mount (AL)</td>
</tr>
<tr>
<td>116-00818-002</td>
<td>Q1118S1001 Stainless Steel Air Shield/Flange Mount (SS)</td>
</tr>
<tr>
<td>116-009177-001</td>
<td>Q1120A1001 Paint shield mounting ring (AL)</td>
</tr>
<tr>
<td>116-009199-001</td>
<td>Q1198A1001 Dual Air Shield/Flange Mount (X98AF only)/(AL)</td>
</tr>
<tr>
<td>116-006087-001</td>
<td>Q1201 Laser</td>
</tr>
<tr>
<td>116-103871-001</td>
<td>Laser Battery, 3V Lithium (laser)</td>
</tr>
<tr>
<td>116-007255-001</td>
<td>Q1201C1001 X-Series Laser Holder (AL/Plastic)</td>
</tr>
<tr>
<td>116-007338-001</td>
<td>Q2000A1001 X-Series Weather Shield (AL)</td>
</tr>
<tr>
<td>116-007338-002</td>
<td>Q2003A10R X3301/X3302 FOV Limiter 10° (AL)</td>
</tr>
<tr>
<td>116-007338-003</td>
<td>Q2003A20R X3301/X3302 FOV Limiter 20° (AL)</td>
</tr>
<tr>
<td>116-007338-004</td>
<td>Q2003A30R X3301/X3302 FOV Limiter 30° (AL)</td>
</tr>
<tr>
<td>116-009122-001</td>
<td>Spare Restrictor Plate 10° (AL)</td>
</tr>
<tr>
<td>116-009122-002</td>
<td>Spare Restrictor Plate 20° (AL)</td>
</tr>
<tr>
<td>116-009122-003</td>
<td>Spare Restrictor Plate 30° (AL)</td>
</tr>
<tr>
<td>116-007290-001</td>
<td>Q9033B Stainless Steel Swivel Mount Assembly is for aluminum and stainless steel detectors</td>
</tr>
<tr>
<td>116-007290-002</td>
<td>Q9033A Aluminum Swivel Mount Assembly is for aluminum detectors only</td>
</tr>
<tr>
<td>116-101197-003</td>
<td>Stop Plug, SS, IP66, Ex d e, M25 (SS)</td>
</tr>
<tr>
<td>116-103517-001</td>
<td>Stop Plug, AL, IP66, Ex d e, M25 (AL)</td>
</tr>
<tr>
<td>116-103313-001</td>
<td>14 mm Hex Wrench (Steel)</td>
</tr>
<tr>
<td>116-103406-001</td>
<td>Screwdriver</td>
</tr>
<tr>
<td>116-107427-040</td>
<td>O-ring - Rear Cover (Viton)</td>
</tr>
<tr>
<td>116-005003-001</td>
<td>1 oz grease for detectors (non-silicon)</td>
</tr>
<tr>
<td>116-001680-001</td>
<td>Window cleaner (6 pack)</td>
</tr>
</tbody>
</table>

Instructions, AutroFlame X98AF 116-P-X98AF/IGB, Rev. D, 2012-02-02, Autronica Fire and Security AS
95-8683, Rev: B/11
Page 21
<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>X98AF</td>
<td>Single Frequency IR Flame Detector</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aluminum</td>
</tr>
<tr>
<td>S</td>
<td>Stainless Steel (316)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>THREAD TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4M</td>
<td>4 PORT, METRIC M25</td>
</tr>
<tr>
<td>4N</td>
<td>4 PORT, 3/4" NPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Relay</td>
</tr>
<tr>
<td>13</td>
<td>Relay and 4-20 mA</td>
</tr>
<tr>
<td>15</td>
<td>Relay and Pulse</td>
</tr>
<tr>
<td>16</td>
<td>Addressable Module Only (Third Party Type)</td>
</tr>
<tr>
<td>23</td>
<td>HART, Relay and 4-20 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>APPROVAL AGENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>FM/CSA/ATEX/CE/IECEEx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CLASSIFICATION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Division/Zone Ex d e</td>
</tr>
<tr>
<td>2</td>
<td>Division/Zone Ex d</td>
</tr>
</tbody>
</table>

*Detectors are always Class I, Div. 1.
APPENDIX A
FM APPROVAL AND PERFORMANCE REPORT

THE FOLLOWING ITEMS, FUNCTIONS AND OPTIONS DESCRIBE THE FM APPROVAL:

- Explosion-proof for Class I, Div. 1, Groups B, C and D (T5) Hazardous (Classified) Locations per FM 3615.
- Dust-ignition proof for Class II/III, Div. 1, Groups E, F and G (T5) Hazardous (Classified) Locations per FM 3615.
- Nonincendive for Class I, Div. 2, Groups A, B, C and D (T3) Hazardous (Classified) Locations per FM 3611.
- Nonincendive for Class II, Div. 2, Groups F and G (T3) Hazardous (Classified) Locations per FM 3611.
- Enclosure rating NEMA Type 4X per NEMA 250.
- Ambient Temperature Limits: –40°F to +167°F (–40°C to +75°C).

The following performance criteria were verified:

AUTOMATIC OPTICAL INTEGRITY TEST:

The detector generated an optical fault in the presence of contamination on any single or combination of lens surfaces resulting in a loss of approximately 50% of its detection range, verifying that the detector performs a calibrated Automatic Optical Integrity (oi) test for each sensor. Upon removal of the contamination, the detector fault was cleared and the detector was verified to detect a fire.

MANUAL OPTICAL INTEGRITY TEST:

The Manual / Magnetic oi performs the same calibrated test as the Automatic oi, and additionally actuates the alarm relay to verify output operation. If there is a 50% loss of its detection range, an alarm signal is not generated.

The Optical Integrity test procedure, as described in the "Magnetic oi / Manual oi" section of this instruction manual, is the approved external optical test method for this detector to verify end-to-end detector function. This test replaces the function and need of a traditional external test lamp.
RESPONSE CHARACTERISTICS

Very High Sensitivity

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Size / Flow Rate</th>
<th>Distance (feet/m)</th>
<th>Typical Response Time (seconds)*</th>
<th>TDSA</th>
<th>Quick Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane</td>
<td>1 x 1 foot</td>
<td>85 (25.9)</td>
<td>15</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Methane</td>
<td>32 inch plume</td>
<td>60 (18.3)</td>
<td>5</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Propane</td>
<td>Torch</td>
<td>2 (0.6)</td>
<td>0.04</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

High Sensitivity

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Size / Flow Rate</th>
<th>Distance (feet/m)</th>
<th>Typical Response Time (seconds)*</th>
<th>TDSA</th>
<th>Quick Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane</td>
<td>1 x 1 foot</td>
<td>50 (15.2)</td>
<td>8</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Methane</td>
<td>32 inch plume</td>
<td>35 (10.7)</td>
<td>3</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Pyrodex</td>
<td>40 grams</td>
<td>10 (3)</td>
<td>0.1</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Black Powder</td>
<td>40 grams</td>
<td>10 (3)</td>
<td>0.04</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

Low Sensitivity

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Size / Flow Rate</th>
<th>Distance (feet/m)</th>
<th>Typical Response Time (seconds)*</th>
<th>TDSA</th>
<th>Quick Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane</td>
<td>1 x 1 foot</td>
<td>15 (4.6)</td>
<td>8</td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>

RESPONSE CHARACTERISTICS IN THE PRESENCE OF FALSE ALARM SOURCES

High Sensitivity, TDSA On, Quick Fire Off

<table>
<thead>
<tr>
<th>False Alarm Source</th>
<th>Distance (feet/m)</th>
<th>Fire Source</th>
<th>Distance (feet/m)</th>
<th>Typical Response Time (seconds)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunlight, direct, modulated/unmodulated</td>
<td>—</td>
<td>2 inch dia Heptane</td>
<td>10 (3)</td>
<td>< 30</td>
</tr>
<tr>
<td>Sunlight, reflected, modulated/unmodulated</td>
<td>—</td>
<td>2 inch dia Heptane</td>
<td>10 (3)</td>
<td>< 30</td>
</tr>
<tr>
<td>70 w sodium vapor lamp, unmodulated</td>
<td>5 (1.5)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>3</td>
</tr>
<tr>
<td>70 w sodium vapor lamp, modulated</td>
<td>5 (1.5)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>3</td>
</tr>
<tr>
<td>250 w mercury vapor lamp, unmodulated</td>
<td>5 (1.5)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>2</td>
</tr>
<tr>
<td>250 w mercury vapor lamp, modulated</td>
<td>5 (1.5)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>3</td>
</tr>
<tr>
<td>300 w incandescent lamp, unmodulated</td>
<td>5 (1.5)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>3</td>
</tr>
<tr>
<td>300 w incandescent lamp, modulated</td>
<td>5 (1.5)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>3</td>
</tr>
<tr>
<td>500 w shielded quartz halogen lamp, unmodulated</td>
<td>5 (1.5)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>2</td>
</tr>
<tr>
<td>500 w shielded quartz halogen lamp, modulated</td>
<td>5 (1.5)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>2</td>
</tr>
<tr>
<td>1500 w electric radiant heater, unmodulated</td>
<td>10 (3)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>3</td>
</tr>
<tr>
<td>1500 w electric radiant heater, modulated</td>
<td>10 (3)</td>
<td>2 inch dia Heptane</td>
<td>3 (0.9)</td>
<td>13</td>
</tr>
<tr>
<td>Two 34 w fluorescent lamps, unmodulated</td>
<td>3 (0.9)</td>
<td>2 inch dia Heptane</td>
<td>10 (3)</td>
<td>3</td>
</tr>
<tr>
<td>Two 34 w fluorescent lamps, modulated</td>
<td>3 (0.9)</td>
<td>2 inch dia Heptane</td>
<td>10 (3)</td>
<td>5</td>
</tr>
<tr>
<td>Arc welding</td>
<td>15 (4.6)</td>
<td>2 inch dia Heptane</td>
<td>5 (1.5)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Add 2 seconds for EQP Model.
FALSE ALARM IMMUNITY

High Sensitivity, TDSA On, Quick Fire Off

<table>
<thead>
<tr>
<th>False Alarm Source</th>
<th>Distance feet (m)</th>
<th>Modulated Response</th>
<th>Unmodulated Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunlight, direct, reflected</td>
<td>—</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
<tr>
<td>Vibration</td>
<td>NA</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
<tr>
<td>Arc welding</td>
<td>15 (4.6)</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
<tr>
<td>70 w sodium vapor lamp</td>
<td>3 (0.9)</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
<tr>
<td>250 w mercury vapor lamp</td>
<td>3 (0.9)</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
<tr>
<td>300 w incandescent lamp</td>
<td>3 (0.9)</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
<tr>
<td>500 w shielded quartz halogen lamp</td>
<td>3 (0.9)</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
<tr>
<td>1500 w electric radiant heater</td>
<td>10 (3)</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
<tr>
<td>Two 34 w fluorescent lamps</td>
<td>3 (0.9)</td>
<td>No alarm</td>
<td>No alarm</td>
</tr>
</tbody>
</table>

FIELD OF VIEW

Very High Sensitivity, Quick Fire Off

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Size</th>
<th>Distance feet (m)</th>
<th>Horizontal (degrees)</th>
<th>Typical Horiz. Response Time (seconds)</th>
<th>Vertical (degrees)</th>
<th>Typical Vert. Response Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane</td>
<td>1 x 1 foot</td>
<td>42.5 (13)</td>
<td>+45 –45</td>
<td>12 –14</td>
<td>+45 –30</td>
<td>10 –16</td>
</tr>
<tr>
<td>Methane</td>
<td>32 inch plume</td>
<td>30 (9.1)</td>
<td>+45 –45</td>
<td>7 –4</td>
<td>+45 –30</td>
<td>6 –4</td>
</tr>
</tbody>
</table>

High Sensitivity, TDSA On, Quick Fire Off

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Size</th>
<th>Distance feet (m)</th>
<th>Horizontal (degrees)</th>
<th>Typical Horiz. Response Time (seconds)</th>
<th>Vertical (degrees)</th>
<th>Typical Vert. Response Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane</td>
<td>1 x 1 foot</td>
<td>25 (7.6)</td>
<td>+45 –45</td>
<td>7 –7</td>
<td>+45 –30</td>
<td>6 –5</td>
</tr>
<tr>
<td>Methane</td>
<td>32 inch plume</td>
<td>17.5 (5.3)</td>
<td>+45 –45</td>
<td>6 –3</td>
<td>+45 –30</td>
<td>4 –4</td>
</tr>
</tbody>
</table>

High Sensitivity, TDSA On, Quick Fire On

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Size</th>
<th>Distance feet (m)</th>
<th>Horizontal (degrees)</th>
<th>Typical Horiz. Response Time (seconds)</th>
<th>Vertical (degrees)</th>
<th>Typical Vert. Response Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Powder</td>
<td>40 Grams</td>
<td>5 (1.5)</td>
<td>+45 –45</td>
<td>0.04 –0.03</td>
<td>+45 –30</td>
<td>0.04 –0.04</td>
</tr>
</tbody>
</table>
APPENDIX B
CSA APPROVAL

PRODUCTS
CLASS 4818 04 - SIGNAL APPLIANCES - Systems - For Hazardous Locations
Class I, Division 1, Groups B, C, and D (T5); Class II, Division 1, Groups E, F, and G (T5);
Class I, Division 2, Groups A, B, C, and D (T3); Class II, Division 2, Groups F and G (T3);
Class III; Enclosure Type 4X;

Infrared Flame Detector/Controller X98AF series, rated 18-30 Vdc, 2.1 Watts to 16.5 Watts.
Relay contacts rated 5 Amps @ 30 Vdc.
EC-TYPE EXAMINATION CERTIFICATE

DEMKO 02 ATEX 132195X

Increased Safety Model

\[\text{Ex d e IIC T5–T6 Gb} \]
\[\text{Ex d IIC T80°C} \]
\[\text{T6 (Tamb –50°C to +60°C)} \]
\[\text{T5 (Tamb –50°C to +75°C)} \]
\[\text{IP66/IP67.} \]

Flameproof Model

\[\text{Ex d IIC T5–T6 Gb} \]
\[\text{Ex d IIC T80°C} \]
\[\text{T6 (Tamb –55°C to +60°C)} \]
\[\text{T5 (Tamb –55°C to +75°C)} \]
\[\text{IP66/IP67.} \]

Compliance with:
EN 60079-0: 2009
EN 60079-1: 2007
EN 60079-7: 2007
EN 60079-31: 2009

INSTALLATION INSTRUCTIONS

The field wiring connections in the terminal compartment are ATEX certified and accepts wiring diameter from 14 AWG (2.08 mm²) to 22 AWG (0.33 mm²).

The flame detector model X98AFIR shall be installed according to the instructions given by the manufacturer.

The cable entry devices shall be certified in type of explosion protection flameproof enclosure "d" for use with the terminal compartment in type of explosion protection flameproof enclosure "d", or in type of explosion protection increased safety "e" for use with the terminal compartment in type of explosion protection increased safety "e". They shall be IP66 rated, suitable for the conditions of use and correctly installed.

Unused entries shall be closed with suitable certified blanking elements.

The metal housing for the Infrared (IR) flame detector type X98AF must be electrically connected to earth ground.

For ambient temperatures below –10°C and above +60°C use field wiring suitable for both minimum and maximum ambient temperature.

Special conditions for safe use:

The EOL resistor can only be used within the flameproof terminal compartment.

EOL resistors must be ceramic, wirewound type, rated 5 watts minimum, with actual power dissipation not to exceed 2.5 watts.

The Infrared (IR) flame detector type X98AF is to be installed in places where there is a low risk of mechanical damage.
NOTE
Operational performance verified from –40°C to +75°C.

NOTE
An optional third party addressable module can only be used within the Ex d flameproof model unless the addressable module is component certified as Ex e for use within the Ex d e increased safety model.

NOTE
Refer to “EOL Resistors” section for installation details. All cable entry devices and blanking elements shall be certified to “E-generation” or “ATEX” standards, in type of explosion protection increased safety “e” or flameproof enclosure “d” (as applicable), suitable for the conditions of use and correctly installed. They shall maintain the degree of ingress protection IP66 for the apparatus. Unused apertures shall be closed with suitable blanking elements.

NOTE
For ATEX installations, the X98AF detector housing must be electrically connected to earth ground.
IECEx CERTIFICATE OF CONFORMITY

DEMKO
IECEx ULD 06.0018X

Ex d IIC T5-T6 Gb
T6 (T_{amb} = -50°C to +60°C) or
T5 (T_{amb} = -50°C to +75°C)
IP66.

Ex d IIC T4-T6 Gb
T6 (T_{amb} = -55°C to +60°C)
T5 (T_{amb} = -55°C to +75°C)
IP66.

Compliance with:
IEC 60079-0: 2007
IEC 60079-1: 2007
IEC 60079-7: 2006

INSTALLATION INSTRUCTIONS

The field wiring connections in the terminal compartment are suitably certified and accepts wiring diameter from 14 AWG (2.08 mm²) to 22 AWG (0.33 mm²).

The flame detector model X98AFir shall be installed according to the instructions given by the manufacturer.

The cable entry devices shall be certified in type of explosion protection flameproof enclosure "d" for use with the terminal compartment in type of explosion protection flameproof enclosure "d", or in type of explosion protection increased safety "e" for use with the terminal compartment in type of explosion protection increased safety "e". They shall be IP66 rated, suitable for the conditions of use and correctly installed.

Unused entries shall be closed with suitable certified blanking elements.

The metal housing for the Infrared (IR) flame detector type X98AF must be electrically connected to earth ground.

For ambient temperatures below –10°C and above +60°C use field wiring suitable for both minimum and maximum ambient temperature.

Special conditions for safe use:

The EOL resistor can only be used within the flameproof terminal compartment.

EOL resistors must be ceramic, wirewound type, rated 5 watts minimum, with actual power dissipation not to exceed 2.5 watts.

The Infrared (IR) flame detector type X98AF is to be installed in places where there is a low risk of mechanical damage.
APPENDIX E
VdS Schadenverhütung GmbH APPROVAL

VdS
Performance per EN54-10,
Certificate of Approval G-203084.

EC-Certificate of Conformity
11 0786 – CPD – 20779
EN54-10 Flame detectors - Point detectors.

SUBJECT MATTER OF THE APPROVAL
IR Flame Detector Type X98AF for use in Automatic Fire Detection and Fire Alarm Systems.

BASIS OF APPROVAL
DIN EN 54, Part 10 (05/02) - Flame Detectors.

INSTRUCTIONS FOR THE APPLICATION OF THE APPROVAL COMPONENT/SYSTEM
The installation shall take into account, that the orientation arrow on the flame detector is directed upwards, as the view angle in this direction is <90°.

The IR-flame detector corresponds to class 1.